
findmagic: Finding library
subroutines in stripped
statically-linked binaries
Katharina Bogad, Technische Universität München

Findmagic is an algorithm designed to re-
cover symbols in statically linked binaries
using an attributed graph matching tech-

nique. It is designed to be easily adoptable to
any given architecture or ABI.

Introduction

In modern reverse engineering, the recovery of stan-
dard library functions still poses a problem to the
reverse engineering community. Usually, statically
linked binaries, especially from commercial sources,
ship without symbols. In non-trivial scenarios, i.e.
on embedded devices or uncommon architectures,
automatic symbol recovery is often impossible due
to the lack of suitable reference files. Although nu-
merous methods have been described to compare
different versions of the same executable, notably
[?] and [?], they focus on carrying reverse engi-
neering work from an earlier binary to a patched
version for vulnerability analysis. Starting from the
beginning, correctly identifying standard library
functions mostly relies on pattern matching based
algorithms like [?]. In this paper, I present a novel
of approach using attributed graphs to identify li-
brary functions. The paper is organised as follows:
first, a general problem description explaining why
and when the pattern matching approach works
great - and when it does not. Second, an in-depth
description of the proposed algorithm, followed by
third, the experimental results, ending in fourth,

final notes and conclusions.

Problem description

The most popular debuggers available, IDA Pro
and radare2, both employ ways to recover symbols
in a stripped statically-linked binary. In IDA Pro,
the recognition is based on a pattern-matching tech-
nique [? , P. 211 ff] using signatures generated from
the object files that were used to link the binaries.
However, this relies heavily on the assumption that
the library used to link against is available for sig-
nature generation as the output of the library com-
pilation process may vary drastically depending on
the compiler flags used to compile. Especially the
chosen optimization level changes for example how
and when gcc inlines functions [?], which in turn
creates different binary patterns.

In an environment where the producer of the an-
alyzed binary does not have control over the source
code or at least cannot compile a version of the
library himself, these pattern matching techniques
work great, as there exist only a relatively small
number of different versions for this library. Even
for runtime libraries like MSVCRT, the Visual C
Runtime from Microsoft, which is closed-source,
where different versions with different patch-levels
exist, a pattern matching technique is entirely fea-
sible since the reverse engineer has all versions
that could have possibly been used to link against
at hand – either on the harddrive or downloadable

KATHARINA BOGAD PAGE 1 OF ??

FINDMAGIC: FINDING LIBRARY SUBROUTINES IN STRIPPED STATICALLY-LINKED BINARIES

from the web. This applies to all other closed-source
libraries as well.

However, in an open-source environment the sup-
plier of the target binary could choose to compile
the library himself, offering control of the optimiza-
tion level. If he chooses not to inline any func-
tions (i.e. for debugging purposes), reference pat-
terns from an object file with optimizations enabled
would most likely not match. This is already a
problem considering binaries that were compiled
on different Linux distributions as most of them use
their own buildfarm to build their packages. Thus,
there are differences in the generated object code as
different compiler flags and different compiler ver-
sions are used. As long as one of these “standard”
libraries is used, one could however guess the exact
library used for linking, download it and generate
the definition file and start matching.

Leaving the standard Linux distributions and
examining binaries for embedded devices, such as
wireless lan routers, the libraries used are often
optimized to a small size, containing only a subset
of functions of the comparable standard library.
Projects like dietlibc1 or uClibc2, that do not directly
provide up to date prebuilt packages and build
environments further enhance the difficulty to find
suitable object files. Most likely, there is no way
of finding out which library exactly was used for
linking. Even if the exact library and version were
known, the compiler version is still important for
branch prediction, which in turn is important for
how the blocks of the non-linear code flow in a
function are ordered in the binary. In practice, there
is no reliable way to guess any of those.

[?] is an algorithm specifically designed for
standard C libraries such as the GNU C Library
(glibc). The algorithm searchs for system calls,
for example int 80h, and looks up their number in
the corresponding system-call table. Using flexible
pattern matching which allows multiple matches,
wrapper functions for these system calls are iden-
tified. This method has multiple drawbacks; the
most significant being that it cannot be applied to
library functions that do not use system calls such
as strcpy, which is very interesting in vulnerability
analysis.

[?], although focusing on preserving reverse-
engineering work between library versions, is simi-
lar to the approach presented in this paper. Flake
defines an executable as a graph of graphs, using the

1http://www.fefe.de/dietlibc/
2http://uclibc.org/

complete control flow of a function, including its
calls, as the semantic equality condition.

Algorithm Design

Generally, a program is defined as a set of attributed
graphs G = (N, B) with the nodes N as the func-
tions and branches B as the calls between them. A
constant is defined as an immediate operand to one
of the instructions and, or, xor or mov. Note how-
ever that immediates passed to the mov instruction
(or its variants) that are adresses to strings outside
the code section are not considered a constant. A
string is defined as an ordered set str of tuples
s = (i, c), with i being the index in the string an c
the character number, fulfilling these conditions:

(∀(i, c) ∈ str : c ≥ 0x20∧ c ≤ 0xDF

∨ c = 0x0A∨ c = 0x0D∨ c = 0x09∨ c = 0x00)

∧ |str| > 1 (1)
∧ (∀(i, c) ∈ str|i = max(i, str) : c = 0x00)

∧ (∀(i, c) ∈ str|i 6= max(i, str) : c 6= 0x00)

Each node can be defined as a set N =
(n, s, C, S, I) with n being the function name, s the
address of the function in the binary, C a multiset
of the constant values used in this function, S a
multiset of the cross-referenced strings used in the
function and I an ordered multiset of the machine
instructions of the function.

The general purpose of the algorithm is to gen-
erate a bijective mapping M = N1 → N2 between a
known library function N1 and a function N2 inside
a statically linked binary. The generation of this
mapping is done in multiple steps. A high-level
overview of these steps is given below; they will be
explained in detail thereafter.

1. Acquire an instance/object file of the target
library that includes debug symbols

2. Analyse the object file and build the attributed
function graphs

3. Analyse the target binary, build its attributed
function graphs

4. Match the graphs of the input object file and
the analysed binary

Object file acquisition

In theory, the algorithm is ineffective when it
comes to function inlining, as this could add

KATHARINA BOGAD PAGE 2 OF ??

FINDMAGIC: FINDING LIBRARY SUBROUTINES IN STRIPPED STATICALLY-LINKED BINARIES

constants or strings to the function that were not
present in the input object file and vice versa. In
practice, compiling a version of the library that
is about the same version as the one used in
the target binary with different inlining options
should yield a reasonably equivalent binary that
could be used for analysation. However, in terms
of the glibc, the vendor of the binary matters
as the Linux distributions alter a string while
building it which will reduce the matchings
of this algorithm. To be precise, the offend-
ing string resides in the _dl_close_worker
function: TLS generation counter
wrapped! Please report as described in
<https://bugs.archlinux.org/>.\n. Note that
the URL changes depending on the origin of the
compiled version of the library. For example, it
would be the debian bug report URL for a version
from the debian repos – the rest of the string would
be identical. While at first sight this makes the
algorithm slightly less effective, it is a huge benefit
for the reverse engineer as such strings leak the
origin of the used library. Usually, there are files
with debug symbols available, thus increasing the
total number of found subroutines, because a closer
match of the development setup used to compile
the library can be achieved.

It may not be necessary to get an object file suit-
able for static linking. As long as the constants
and the string cross references are not altered, the
matching will succeed. Still, one has to be careful,
because it can be shown that alignof() evaluates
differently compiling a relocatable object compared
to a non-relocatable. While functionally equiva-
lent, this leads to different strings when used in
assert(), like in glibcs malloc():

2391 a s s e r t ((unsigned long) (o l d _ s i z e) < (unsigned
long) (nb + MINSIZE)) ;

Figure 1: Problematic assert() in malloc.c

Compiling glibc 2.21, this assert evaluates differ-
ently depending on wether relocation is enabled or
not:
•
1 nb + (unsigned long) (
2 (
3 (
4 (_ _ b u i l t i n _ o f f s e t o f (s t r u c t

malloc_chunk , f d _ n e x t s i z e)) +
5 (
6 (2 ∗ (s i ze of (s i z e _ t)) <

__a l ig nof__ (long double) ?
7 __a l ig nof__ (long double) :
8 2 ∗ (s i ze of (s i z e _ t))
9) − 1)

10)
11 & ~(
12 (2 ∗ (s i ze of (s i z e _ t)) < __a l ignof_ _

(long double) ?
13 __a l ign of__ (long double) :
14 2 ∗ (s i ze of (s i z e _ t))
15) − 1

16)
17)
18)
19)

compiling without relocation enabled
•
20 nb + (unsigned long) (
21 (
22 (
23 (_ _ b u i l t i n _ o f f s e t o f (s t r u c t

malloc_chunk , f d _ n e x t s i z e)) +
24 (
25 (2 ∗ (s i ze of (s i z e _ t))) − 1

26)
27)
28 & ~(
29 (2 ∗ (s i ze of (s i z e _ t))) − 1

30)
31)
32)
33)

compiling with relocation enabled

Note however, that these listings are prettified
versions of the actual string produced by assert()
to enhance readability. The actual output has nei-
ther indentation nor line breaks.

Automatic binary analysis

This step will be applied to both the input object
file and the target binary. Both I will refer to as
“input file” hereinafter. Based on a pre-gernerated
list of subroutines in the input file, every function’s
instructions will be examined. Such a list can be ob-
tained using a debugger of your choice, for example
IDA Pro or radare2.

In the following, str(x) denotes the string re-
trieved from a given immediate that exists iff there
is a string at the generated offset of x which can
be determined using (??); imm(x) is the immedi-
ate of the instruction; op(x) the first byte of the
opcode of the instruction. Furthermore, callee(x)
is the node N of the function for a given imme-
diate x; Nc shall denote the currently examined
function. Let us define the following three inclusion
rules, which will determine if and to which list a
given instruction immediate will be added. Func-
tion cross-references will also be resolved, however
only near calls are resolved and relocated functions
(from extern libraries, for example) are ignored.
Note that these formal definitions only hold true

KATHARINA BOGAD PAGE 3 OF ??

FINDMAGIC: FINDING LIBRARY SUBROUTINES IN STRIPPED STATICALLY-LINKED BINARIES

for the Intel x86_64 Architecture. While the algo-
rithm is not bound to any specific architecture, these
definitions need to be adapted when applying to
different architectures.

∀i ∈ I ∈ Nc :
B ∪ {Nc, callee(imm(i))} ⇐⇒ (2)

i ∈ {call} ∧ op(i) = 0xE8

S ∪ {str(imm(i))} ⇐⇒ (3)
i ∈ {lea, mov} ∧ ∃str(x)

C ∪ {imm(i)} ⇐⇒ (4)
i ∈ {and, or, xor, mov} ∧ ∃imm(i)

Matching

There are many (Sub)Graph isomorphism3 algo-
rithms. Today, Ullmanns [?] algorithm is still
one of the most popular ones used for exact graph
matching, although it was originally developed for
graph and subgraph isomorphism. [?][P. 121ff]
compared it to other algorithms and coming to the
conclusion that it is the most appropriate if the in-
put graphs are small to mid-size (up to 500 nodes)
and are unattributed.

Discussing graph isomorphism, it is also neces-
sary to mention the Nauty algorithm [?]. Before
checking the isomorphism, it first transforms the
graph into a canonical form. While it is one of the
fastest algorithms available, it has been shown that
there are classes of graphs where its time complex-
ity employs exponential time. Furthermore, it only
provides exact graph isomorphism, being not able
to solve the graph-subgraph isomorphism problem,
as it partitions whole colored graphs for matching.

A third popular algorithm is the VF2 Algorithm
[?], which is based on five feasibility rules and a
state space representation (SSR) of the matching
process. Essentially, the SSR used is a vector of
nodes in the matching. This representation allows
to check syntactic and semantic equivalence in one
step, allowing a faster pruning of the search tree.
Comparing VF2 to other algorithms shows that
it has significantly better time and memory com-
plexity than Ullmann and is for small randomly
connected graphs faster than Nauty; on 2D mesh
graphs, it outperforms Nauty if |N| ≥ 80.

For this algorithm, I decided to rely on VF2,
mainly for three reasons:

3An isomorphism is a function that maps the shape of two
mathematical structures. From the ancient greek isos =
equal and morphe = shape.

• It is fast - even if it is not the fastest algorithm, it
always performs at least second best compared
to Nauty and Ullmann [? , p. 1370].

• Callgraphs cannot be considered purely ran-
domly connected, as there are functions
which imply calls other functions afterwards,
like malloc() and free() or accept() and
close(). While these do not directly apply
to glibc, as only a subset of such functions is
actively used there, the general concept should
be evident. Also, there are a lot of trivial, regu-
lar 2D mesh call graphs opposed to the number
of huge non-regular ones like the callgraph of
vfprintf. VF2 outperforms Nauty and Ull-
mann on graphs showing at least some kind of
regularity [? , p. 1370].

• Its ability to check semantic and syntactic
equivalence in one step, allowing the algo-
rithm to check it semantic dependencies such
as strings and cross references while checking
syntactic equivalence.

Let G1 = (N1, B1) and G2 = (N2, B2) be two
graphs that should be matched. A mapping M ⊂
N1 × N2 is a mapping iff M is a bijective function
that does not alter the branch structure of the two
graphs. A state space representation s is introduced,
with M(s) describing the partial mapping of a state
s. It contains only a subset of M. From M(s), two
subgraphs G1(s) and G2(s) can be derived, con-
taining only those nodes already present in the
partial mapping and the branches connecting them.
These nodes, with their branches, univocally iden-
tify a subgraph of G1 or G2, respectively. Further-
more, M1(s), M2(s), B1(s) and B2(s) are defined as
the nodes (and branches respectively) of G1(s) and
G2(s).

Using this definition, a transition from a state s
to a successor state s′ is the simple addition of a
pair (n, m) of matched nodes. Still, only a small
subset of these states are consistent, in the sense
that nothing impedes reaching a complete solution
where no nodes are left unmatched. To further
reduce the search space, a set of k-lookahead-rules is
introduced, determining whether a consistent state
can be reached after k iterations. These rules will
hereinafter be called feasibility rules, to be consistent
with the original paper.

The most general form of the feasibility function,
which is true if the addition of a pair (n, m) satisfies
all feasibility rules, taking also into account not only

KATHARINA BOGAD PAGE 4 OF ??

FINDMAGIC: FINDING LIBRARY SUBROUTINES IN STRIPPED STATICALLY-LINKED BINARIES

syntactical but also semantical equivalence, is the
following:

F(s, n, m) = Fsyn(s, n, m) ∧ Fsem(s, n, m)

In the initial state s0, the matching M is empty,
i.e. M(s0) = ∅. In each intermediate step, the algo-
rithm computes a set P(s) containing the node pairs
that are candidates to be added to the intermediate
state s. This is done by first considering all nodes
directly connected to G1(s) and G2(s) respectively.
Let Tin

n (s) denote the nodes with branches ending
into Gn(s), and Tout

n (s) as the nodes with branches
starting from Gn(s). To employ the depth-first strat-
egy, P(s) will consist of all node pairs (n, m) with
n ∈ Tout

1 (s) and m ∈ Tout
2 (s). If one of these two

sets is empty, Tin
n shall be used instead. If one of

these sets is empty too, the algorithm backtracks.
For the next step, the five feasibility rules are

defined as follows. These check the syntactic equiv-
alence: the first two check the consistency of adding
a node pair to the state s, the rest is used to prune
the search tree utilising a 1- and 2-look-ahead, re-
spectively. Pred(G, n) shall denote the set of prede-
cessors of a node n in a graph G; Succ(G, n) the set
of successors of a node n in a graph G. Furthermore,
we define Ñn(s) = Nn −Mn(s)− (Tin

n ∪ Tout
n).

Rpred(s, n, m) ⇐⇒
(∀n′ ∈ M1(s) ∩ Pred(G1, n)∃

m′ ∈ Pred(G2, m)|(n′, m′) ∈ M(s))∧
(∀m′ ∈ M2(s) ∩ Pred(G2, m)∃

n′ ∈ Pred(G1, n)|(n′, m′) ∈ M(s))

Rsucc(s, n, m) ⇐⇒
(∀n′ ∈ M1(s) ∩ Succ(G1, n)∃

m′ ∈ Succ(G2, m)|(n′, m′) ∈ M(s))∧
(∀m′ ∈ M2(s) ∩ Succ(G2, m)∃

n′ ∈ Succ(G1, n)|(n′, m′) ∈ M(s))

Rin(s, n, m) ⇐⇒

(
∣∣∣Succ(G1, n) ∩ Tin

1 (s)
∣∣∣ =∣∣∣Succ(G2, m) ∩ Tin

2 (s)
∣∣∣)∧

(
∣∣∣Pred(G1, n) ∩ Tin

1 (s)
∣∣∣ =∣∣∣Pred(G2, m) ∩ Tin

2 (s)
∣∣∣)

Rout(s, n, m) ⇐⇒
(
∣∣Succ(G1, n) ∩ Tout

1 (s)
∣∣ =∣∣Succ(G2, m) ∩ Tout
2 (s)

∣∣)∧
(
∣∣Pred(G1, n) ∩ Tout

1 (s)
∣∣ =∣∣Pred(G2, m) ∩ Tout
2 (s)

∣∣)
Rnew(s, n, m) ⇐⇒

(
∣∣∣Ñ1(s) ∩ Pred(G1, n)

∣∣∣ =∣∣∣Ñ2(s) ∩ Pred(G2, m)
∣∣∣)∧

(
∣∣∣Ñ1(s) ∩ Succ(G1, n)

∣∣∣ =∣∣∣Ñ2(s) ∩ Succ(G2, m)
∣∣∣)

Additionally to these syntactic feasibility rules,
a sixth semantic feasibility rule is introduced. For
this rule, a compatibility relation ≈ between two
nodes and their node/branch attributes is defined.
Although for some applications ≈ may coincide
with the equality relation, for our attributed call
graph this is not the case. Using our designated
node definition, the compatibility relation can be
defined this way:

n ≈ m ⇐⇒
(∀c ∈ Cn ∃ c′ ∈ Cm|c = c′)∧
(∀c ∈ Cm ∃ c′ ∈ Cn|c = c′)∧
(∀s ∈ Sn ∃ s′ ∈ Sm|s = s′)∧
(∀s ∈ Sm ∃ s′ ∈ Sn|s = s′)

This yields the final semantic feasibility rule:

Fsem(s, n, m) ⇐⇒ n ≈ m
∧ ∀(n′, m′) ∈ M(s), (n, n′) ∈ B1 ⇒

(n, n′) ≈ (m, m′)
∧ ∀(n′, m′) ∈ M(s), (n′, n) ∈ B1 ⇒

(n′, n) ≈ (m′, m)

The matching is done in a brute-force manner,
matching every graph from the object file with ev-
ery graph from the target file. If a unique matching
is found, each node in the target graph of the match-
ing gets a name assigned based on the one in the
matched object file graph. If more than one possible
matching is found, the top node is added to a list of
ambiguous nodes with the rest of the nodes in the
matching remaining unchanged. For the following
formal definition, let us define v f 2(G1, G2) as the
VF2 matching function outlined above; cg(n) as the
call graph of the node N (that is, a sub graph of the

KATHARINA BOGAD PAGE 5 OF ??

FINDMAGIC: FINDING LIBRARY SUBROUTINES IN STRIPPED STATICALLY-LINKED BINARIES

whole library call graph). Furthermore, we define
a set E, which holds the exact matches and a set A
holding the ambiguous matches.

∀no ∈ Nobj :

∀nt ∈ Ntarget : (5)
A = A ∪ {{no, nt}} ⇐⇒ vf2(cg(no), cg(nt))

∀{no, nt} ∈ A| 6 ∃{no2, nt2} ∈ A|no = no2 ∧ nt 6= nt2 :
A = A\{no, nt}, E = E ∪ {no, nt} (6)

Implementation issues

For comparison with other established symbol re-
covery methods, an implementation of this algo-
rithm was made. This implementation is - alongside
its sourcecode - freely available on GitHub4.

In practice, it turned out that libraries may con-
tain functions that contain neither callees nor suit-
able constants or strings. Some of these functions
are called by an identifiable function, which in
turn yields their name; however, there exist cases
where such a mapping is not possible. These
functions are not recoverable, for example, look
at secure_getenv(), which has neither strings nor
constants nor cross references as defined in this
paper.

Likewise, there are cases in which nodes in the
graph from the object file are considered equal as
by our defined compatibility relation. In this case,
function names can still be found, but it will most
likely occur that there are multiple possibilities, if
the function is not already identified in the graph
of a unique function.

For this reason, the actual matching is split up
in the implementation: first, match everything that
can be uniquely identified, then iterate over the rest,
this time allowing multiple matchings.

To save time upon matching, the analysis of the
object file can be precomputed. A reasonable, json-
based [?] data format has been developed. For
examples, see the source code of the implementa-
tion.

Evaluation

For testing glibc function symbol recovery, a sim-
ple test program was created:

4https://github.com/masterofjellyfish/
findmagic

1 i n t main ()
2 {
3 puts ("Dummy") ;
4 return 0 ;
5 }

Figure 2: Source code of used test program

This was then compiled with gcc and linked stat-
ically: gcc -static -o dummy dummy.c. Addition-
ally, a stripped version, dummy-stripped was gen-
erated using strip(1). Thereafter, a definition file
was generated from the non-stripped version, or,
depending on the algorithm used, the libc.a used
for static linking. Subsequently, both definitions
were applied to the stripped binary. The results are
outlined in the following table.

find- FLIRT
definitions linked against magic (IDA)

glibc 2.21
(arch linux)

glibc 2.21
(arch linux) 376 233

glibc 2.21
(arch linux)

glibc 2.13
(debian-
wheezy)

105 72

Figure 3: Comparison of # of correctly recovered Symbols

Not included in the list below, although worth
mentioning, is the algorithms ability to give hints
which function at a given offset might be. This is in-
credibly helpful for functions like strcpy(3), where
multiple versions utilizing different instruction sets
(SSE/2/3/4, AVX, ...) exist, that all do the same job.
They are usually indistinguishable; but all perform
the same operation, so knowing the possible offsets
for these functions yields what they do, even if the
algorithm cannot correctly decide which one is at
which offset. While this does not automate away
manual reversing, it can be used as a starting point;
which is a clear advantage over FLIRT5.

Known limitations

As mentioned earlier, the algorithm fails to recover
a function symbol if there are multiple possibili-
ties for a function and the function is not part of a
unique call graph. This may happen with subrou-
tines that fulfill all of the following conditions:

1. Is not called within the library

2. Does not call anything
5Fast Library Identification and Recognition Technology

KATHARINA BOGAD PAGE 6 OF ??

FINDMAGIC: FINDING LIBRARY SUBROUTINES IN STRIPPED STATICALLY-LINKED BINARIES

3. Does not use any constants as defined in this
paper

An example of such a function is outlined in the
following figure:

1 .CapstoneX86Detai l
2 push rbp
3 mov rbp , rsp
4 mov rax , rdi
5 add rax , 0x30

6 leave
7 re tn

Figure 4: Problematic function

For reference, the original source code of this
function might have looked like this:

1 cs_x86∗ CapstoneX86Detail (c s _ d e t a i l ∗ d e t a i l) {
2 return &d e t a i l−>x86 ;
3 }

Figure 5: Problematic function source code

Excluding the immediate 0x30 from the constants
makes sense. Altough we cannot match this func-
tion correctly, including it would make the algo-
rithm much more version and compilation depen-
dant:

• The value of the immediate is bound to the
structure of the struct it operates on.

• The value can change between minor releases,
as bugfixes are introduced

• Without knowing the target architecture, the
offset of the x86 member in the struct is not
predictable.

Theoretically, this algorithm is not bound to any
specific architecture or operating system. However,
it was developed and tested on GNU/Linux as-
semblies only. As long as a suitable method for
resolving cross-references and extracting immedi-
ate operands can be found, the algorithm applies
to any given architecture.

While false positives can happen, it is very un-
likely on large functions, especially if they contain
strings. Still, false positives are only a real problem
if the real version of this subroutine is not included,
while a false one is. Otherwise, one will not get a
definitive match but hints instead.

Conclusion

In this paper, I presented a suitable algorithm
for symbol recovery in statically linked binaries.
For glibc, it performs better than the algorithm
shipped with IDA Pro, a popular commercial disas-
sembler. The symbol recovery algorithm also does
not need the exact match of library version, com-
piler and compiler flags; a reasonably close assump-
tion - maybe compiled from source for analysis - is
enough in most cases.

References

[1] Options That Control Optimization. https:
//gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html.

[2] T. Bray. The javascript object notation
(json) data interchange format, March 2014.
RFC7159.

[3] T. Dullien and R. Rolles. Graph-based compar-
ison of executable objects.

[4] B. P. Miller E. Jacobson, N. Rosenblum. La-
beling library functions in stripped binaries.
2011.

[5] C. Eagle. The Ida Pro Book: The Unofficial Guide
To The World’s Most Popular Disassembler. No
Starch Press, Inc., 2011.

[6] M. Van Emmerik. Identifying library functions
in executable file using patterns. In Software
Engineering Conference, 1998. Proceedings. 1998
Australian, pages 90–97, Nov 1998.

[7] Halvar Flake. Structural comparison of exe-
cutable objects. 2004.

[8] C. Sansone L.P. Cordella, P. Foggia and
M. Vento. A (sub)graph isomorphism algo-
rithm for matching large graphs. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions
on, 26(10):1367–1372, Oct 2004.

[9] B. D. McKay. Practical graph isomorphism.
30:45–87, 1981.

[10] B. T. Messmer. Efficient graph matching algo-
rithms, 1995.

[11] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. ACM, 23(1):31–42, January
1976.

KATHARINA BOGAD PAGE 7 OF ??

